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Abstract 

Methods have been developed for predicting the 
properties of the new type of structurally forbidden 
reflections arising from anisotropic X-ray suscepti- 
bility of crystals. The general symmetry properties of 
the spatially dependent tensor of X-ray susceptibility 
are described. From this tensor the structure am- 
plitudes and new extinction rules for the screw-axis and 
glide-plane 'forbidden' reflections are derived. All these 
forbidden reflections may be excited except the 00l 
(l = 2n + 1) reflections for a 63 screw axis and the 00l 
(l = 6n + 3) reflections for 6~ and 65 screw axes. The 
polarization properties of these forbidden reflections are 
very unusual. For example, a a-polarized incident beam 
can give a n-polarized diffracted one and vice versa; in 
some cases only a circularly polarized beam is 
diffracted, etc. Some estimations show that near the 
X-ray absorption edges the structure amplitudes of 
these reflections can be of the order of a few electrons 
atom -~. The general methods are illustrated by their 
application to the rutile structure. 

Introduction 

It is well known that the conditions limiting possible 
X-ray reflections are only applied when the equivalent 
positions in a crystal are assumed to be occupied by 
atoms with the same scattering amplitude. In fact, the 
interatomic interaction leads to small asphericity of 
atoms and, in general, the scattering amplitudes of the 
crystallographically equivalent atoms are not the same. 
Hence, 'forbidden' reflections can occur. 

There are several physical reasons for the scattering 
amplitudes of the crystallographically equivalent atoms 
to be nonequivalent. The asphericity of atomic electron 
density and anisotropic and anharmonic thermal 
motion in crystals are the best known causes of 
forbidden reflections (Renninger, 1937; Dawson, 
1967a, 1967b). The well known example is the 222 
reflection in crystals with the diamond structure. Then, 
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the scattering amplitude is spin-dependent and the 
magnetic X-ray reflections are observed in the mag- 
netically ordered crystals (de Bergevin & Brunel, 1981; 
Brunel & de Bergevin, 1981; Faleyev, Lomov & 
Labushkin, 1981). The least known cause of forbidden 
reflections is the anisotropy of X-ray susceptibility of 
atoms in crystals (Templeton & Templeton, 1980). This 
anisotropy is very small in the X-ray region and in 
conventional X-ray diffraction theories the tensor of 
susceptibility is supposed to be isotropic (Vainshtein, 
1979; Iveronova & Revkevich, 1972; Pinsker, 1978). 
But near X-ray absorption edges the absorption of 
X-ray beams depends on their polarization and in this 
case the anisotropy of susceptibility is essential 
(Az~iroff & Pease, 1974; Heald & Stern, 1977; 
Templeton & Templeton, 1980; Cox & Beaumont, 
1980, and references therein). Thus, near the absorp- 
tion edges the anisotropy of X-ray susceptibility should 
be taken into account in X-ray diffraction and the 
intensities of the forbidden reflections mentioned above 
may have measurable values (for convenience, here- 
after these reflections will be called ATS reflections, 
where ATS denotes the anisotropy of the tensor of 
susceptibility). It is our purpose here to show how the 
general properties of ATS reflections can be obtained 
from the symmetry considerations. The optimum 
conditions for the experimental observation of ATS 
reflections and possible applications of these reflections 
are also discussed. 

Symmetry properties of the tensor of susceptibility 

To describe the diffraction of X-rays in crystals one 
needs the tensor of susceptibility ,~(r) for the X-ray 
frequency range. For the optical range all crystals may 
be regarded as a homogeneous media and only the 
uniform part of the susceptibility should be taken into 
account. The symmetry properties of this part are 
completely determined by the point group of the crystal 
and are well known from optics. For X-ray diffraction 
the spatially-dependent periodic part of,~(r) is essential. 
The symmetry of this part of ,~(r) is different in the 
different points of a unit cell and is determined by the 
space group of the crystal. The general properties of 
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X-ray susceptibility have been discussed by Kolpakov, 
Bushuyev & Kuz'min (1978). In the present paper it 
will be assumed for simplicity that the susceptibility 2'(r) 
gives at every point r the local relationship between the 
X-ray electric field E(r) and the polarization of the 
crystal P(r), 

4 riP(r) = 2(r) E(r). (1) 

Owing to the anisotropy of susceptibility the vector P(r) 
is not parallel to E(r). Equation (1), usually used in 
X-ray diffraction theories, implies that spatial dis- 
persion is absent. The frequency dispersion is not 
omitted and ~(r) is supposed to be a function of X-ray 
frequency. The tensor ~,(r) is symmetrical: Xik(r) = 
~,ki(O; i, k = 1, 2, 3. 

Thus, we should obtain the most general tensor ,~(r) 
which is invariant under the space group of the crystal. 
This may be done in the following way. All atoms 
occupy the definite set of equivalent positions in a unit 
cell. Therefore, first we can obtain the tensor ~,b(r) for 
some basic atom of the set taking into account the point 
symmetry of its position. Then, the tensor ~.i(r) for the 
j th atom of the set can be obtained from ~,o(r) by the 
symmetry transformation which connects the j th atom 
with the basic one. Finally, the complete tensor 2(r) is 
the sum taken over all j and over all sets of equivalent 
positions occupied by atoms. 

To do all these calculations we should know the 
transformations of 2(r) under symmetry operations. Let 
us consider a symmetry operation g which includes a 
point operation (rotation and/or mirror reflection) and 
some translation. Under this operation an arbitrary 
tensor 2(r) is transformed into another tensor 2e(r) in 
the following way (Korn & Korn, 1968; Shubnikov & 
Koptsik, 1972): 

2~(r) = / ~  2(r') I~; 1, (2) 

where r' = R21 (r - ae),/~e is the matrix of the point 
operation, ag is the vector of translation. If ~(r) is 
invariant under the operation g, then )~(r) = ~(r) and, 
hence, 

2(r) = / ~  2(r, ) /~ ; i .  (3) 

The tensor ~t,(r) of the basic atom should be invariant 
under all g ~ G, where G is the point group of the basic 
atom position. The most general tensor with such 
properties may be constructed from an arbitrary 
symmetric tensor ~(r) by the following averaging over 
the group G 

gEG 
(4) 

[in (4) we put ae = 0 because G is the point group]. 
Then, from (2) we can obtain the tensor ~.i(r) of the j th 
atom using the symmetry operation gg which connects 
the position of the j th  atom with the basic one. Finally, 

the summation over all j and over all sets of occupied 
positions gives us the most general tensor ~,(r) which is 
invariant under the space group of the crystal. Notice 
that in these calculations the asphericity of the atomic 
electron density is taken into account automatically 
{being scalar the electron density is proportional to 
Sp[,~(r)] }. Now, using the symmetry properties of )~(r) 
we can study the properties of ATS reflections. 

Forbidden reflections 

It is well known that the conditions limiting possible 
reflections may be different for general and special sets 
of positions (International Tables for  X-ray Crys- 
tallography, 1952). If the asphericity of the atomic 
electron density or thermal motion is taken into 
account, then the special conditions are violated but the 
general ones are not. However, the latter conditions can 
also be violated if the anisotropy of the tensor of 
susceptibility is taken into account. It is clear that those 
general conditions which arise for centred lattices 
remain valid, because for pure translations the trans- 
formations are the same both for tensors and for 
scalars. But the glide-plane and screw-axis conditions 
are no longer valid (Templeton & Templeton, 1980) 
and now we shall prove this rigorously. 

It is convenient to introduce the tensor structure 
amplitude pH, which is proportional to the Fourier 
component f f  of the tensor ,~(r)" 

p . _  v v [- 
r0 22 ,~  = r0 22 J 2(r) exp (2niHr) dr, (5) 

where v is the volume of the unit cell; r 0 is the classical 
electron radius, r 0 = e2/(mc2); 2 is the X-ray wave- 
length; H is the reciprocal-lattice vector; the inte- 
gration is over the volume of the unit cell. 

Consider first the glide-plane forbidden reflections. 
Let the glide plane ¢ be normal to the axis x and, hence, 
any point x,y,z is transformed into .,~, y, z + ½. For Okl 
reflections the tensor structure aml~litude is given by 

FOkl _ V f r0 22 2(x,y,z) exp [2ni(ky + lz)] dx dy dz. (6) 

The susceptibility ~.(x,y,z) should be invariant under the 
glide-plane transformation and from (3) it follows that 

Z(x,y,z) = l~m 2( fg, y, z -½)/~m 1, (7) 

where the transformation matrices -Rm and /~m ~ are 
given by 

(-i °°) K m = R m  I = 1 0 . 

0 1 

(8) 
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Substituting (7) into (6) and changing the integration 
variables we have 

pOkl = e- in l  1~ m l~Okl ~ m  1 " (9) 

If  the anisotropy of susceptibility is absent then the 
structure amplitude is scalar and from (9) we obtain 

Fok t = e -i'~t Fok t. (10) 

In this case Fok t :/= 0 if I = 2n (n = 1, 2, 3 . . . .  ) and we 
have the well known glide-plane condition for possible 
reflections ( In te rna t iona l  Tables  f o r  X - r a y  Crystal lo-  
graphy ,  1952). But if the anisotropy of  susceptibility is 
taken into account  then the matrices /~m and /~m l 
change the sign of the x y  and x z  components  of  the 
tensor structure amplitude p0k~ on the right side of  (9). 
For  forbidden reflections we have e-~'~t = - 1  and tensor 
fok t  can contain the x y  and x z  components  only: 

/~kt = F 1 0 , (l 1) 

2 0 

where F l and F 2 are independent parameters ,  l = 
2n + 1. From (1 1) it is clear that  reflections with l = 
2n + 1 arise due to the anisotropy of  susceptibility and 
cannot  arise due to the asphericity of  atomic electron 
density because the Fourier t ransformat ion  of the 
density is proportional  to S p ( F  TM) and is equal to zero. 
For  nonforbidden reflections the tensor structure 
amplitude is determined by four independent par- 
ameters  li ,00) fi'Okl_= F 2 F 4 " l =  2n. (12) 

F 4 F 

N o w  let us consider the screw-axis forbidden 
reflections. The screw axis ni is assumed to be along z 
and contains the rotation at angle q / =  2rdn around z 
and the translation j / n  along z ( j  < n). For  the 001 
reflections the structure amplitude (5) is given by 

f-00l _ V f ro 22 ~(x ,y , z )  exp (2rcilz) d x  dy dz.  (13) 

The susceptibility y((x,y,z) should be invariant  under the 
screw-axis t ransformat ions  and from (3) we find that  

2 ( x , y , z ) = t ~ , 2 ( x ' , y ' , z - j / n ) t ~  l, (14) 

where ~ = 2zdn, t~-, 1 = t~_,,  

/cos ,~ - s i n  ~, i )  

/~, = ~ S i o  gt cos g t 0  ; 

x '  = x cos q/+ y sin 
y '  = - x  sin ~ + y cos ~. (15) 

Then, substituting (14) into (13) and changing the 
integration variables we have 

foot  = exp (2rciO'/n)/~0 p 0 0 t / ~ I .  (16) 

This tensor equation m a y  be regarded as a set of  linear 
homogeneous  equations for the components  of  the 
tensor p00t. For  some l the determinant  of  this set of  
equations is equal to zero and, hence, nonzero solutions 
of  these equations are possible, foot 4 : 0  and corre- 
sponding reflections are allowed. Some of  these 
reflections are those given in In t e rna t iona l  Tables  f o r  
X - r a y  Crys ta l lography  (1952), but the others arise due 
to the anisotropy of  susceptibility (ATS reflections). 
Omitting here the details of  tedious calculations, let us 
give and analyse the final results for ATS reflections 
only (see Table 1). F rom Table 1 it follows that  for each 
ATS reflection all components  of  the tensor structure 
amplitude f n  are determined by at most  two inde- 
pendent parameters  F 1 and F 2 (F  l and F 2 m a y  be 
complex). To avoid confusion it should be emphasized 
that  these parameters  are different for different re- 
flections and their numerical  values m a y  be obtained 
from the microscopic theory of  X- ray  susceptibility. 
F rom the developed phenomenological  theory it follows 
only that  these parameters  may  be non-zero if only a 
screw axis (or glide plane) is taken into account  [in the 
above calculations of f a  we used only the screw-axis 
and glide-plane t ransformat ion  properties of  ~,(r)]. 
Other  symmet ry  operat ions can lead to additional 
relationships between F 1 and F 2 or even make  them 
vanish. For  example,  there are 21 screw axes in the 
crystals with space group 1213 but the 00l (l = 2n + 1) 
reflections remain forbidden because the group is body 
centred. Note  that  in the case of  the 63 screw axis the 

Table 1. The  componen t s  o f  the tensorial  s t ructure  
ampl i tudes  1 e n  a n d  indices I f o r  A T S  reflections (n = 
0, _+1, _+2, . ..; other  componen t s  o f  f H :  p ~  = __Fx x'H., 

P~ 0; "H " . .  = = = , =F~) Fx~y, F~" F~ "H 

Screw axis or 
glide plane F~Hx F~Hr /:~z F~ l Type 

21 0 0 F 1 F 2 2n + 1 I 
31 F 1 -T-iF 1 F 2 +iF 2 3n + 1 II 
32 F 1 +iF 1 F 2 ¥iF 2 3n + 1 II 
41 0 0 F 1 +iF 1 4n + 1 I 
41 F 1 F 2 0 0 4n + 2 II 
42 F 1 F 2 0 0 2n + 1 II 
4 3 0 0 F 1 ¥iF 1 4n +_ 1 I 
4 3 F 1 F 2 0 0 4n + 2 II 
61 0 0 F 1 +_iF 1 6n +_ 1 I 
61 F 1 +iF 1 0 0 6n +_ 2 II 
61 0 0 0 0 6n + 3 
62 F 1 +iF 1 0 0 3n + 1 II 
63 0 0 0 0 2n + 1 
64 F 1 ¥iF 1 0 0 3n + 1 II 
65 0 0 F 1 ¥iF 1 6n + 1 I 
6 s F 1 ¥iF l 0 0 6n + 2 II 
65 0 0 0 0 6n + 3 
c 0 F 1 F 2 0 2n + 1 II 
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00l (l = 2n + 1) reflections remain forbidden (see Table 
1) because in the x y  plane the anisotropy of sus- 
ceptibility is absent due to the inevitable threefold 
rotation axis. For 61 and 65 axes the reflections with l = 
6n + 3 remain forbidden because only the dipole 
interaction of X-rays is taken into account in the 
developing theory. It may be shown that, for example, 
the quadrupole interaction makes these reflections 
possible. 

Intensity and polarization properties of  ATS reflections 

To study the properties of ATS reflections we shall use 
the kinematical theory of diffraction. It is well known 
that in this theory the reflection intensity I n is 
proportional to I Fnl  2 and for a nonpolarized incident 
beam we have 

I n = A n l F n l  2 (1 + cos 2 20n)/2, (17) 

where O n is the Bragg angle, A n is a proportionality 
factor which depends on the incident beam intensity, 
the sample volume, etc.* (Vainshtein, 1979). Equation 
(17) is valid when the anisotropy of,~(r) is absent and 
F n is scalar. If the anisotropy of ~,(r) is taken into 
account then it is convenient to introduce the reflection 
intensity of an a-polarized incident beam into a 
IS-polarized reflected one 

I,~ = 113+/~n I112, (18) 

where a and 13 are the unit vectors of polarization, p n  is 
the tensorial structure amplitude [see (5) and Table 1] 
and the cross denotes Hermitian conjugation. Instead 
of arbitrary a and 13, the conventional normal and 
parallel vectors of polarization o and n may be used. If 
the incident beam is o or n polarized or nonpolarized 
then the reflection intensities for these three cases are 
given by the following expressions 

I o = I00 + I . t  (19) 

I,~ = I to  + I,~ t (20) 

I n =  (Io + It)~2, (21) 
where 

I o 0 =  lea e "  OI 2 

I ~  = Inn p n  n012 (22) 

lo  t = i t  ° = in  n p n  O12 : [opH n012 

and go and n n are the vectors of n polarization for 
incident and reflected beams. It may be easily proven 
that (21) transforms into (17) if the anisotropy of 
susceptibility is absent. 

From the kinematical theory the polarization of the 
reflected beam can be obtained in the following way 
(Belyakov, 1975). If a is the polarization vector of the 

* For simplicity hereafter the factor A, will be omitted. 

incident beam then the polarization vector of the 
reflected beam 13 n is that for which the right side of (18) 
has its maximum value. Thus, from (18) we have 

13 n = Bn/I Bnl , (23) 

where B n = a ( a P u n )  + n u ( n n P  u n). Note that in 
general 13 h, depends on a but in some cases does not (see 
below). 

Let us consider the properties of the glide-plane ATS 
reflections. As above, we assume that the glide plane c 
is normal to axis x. For simplicity we consider the 00l 
(l = 2n + 1) ATS reflections only. From (11) and 
(19)-(22), the reflection intensities for a- and n- 
polarized or nonpolarized incident beams are given by 

I0 = IF1 Iz (sin 2 O n + cos 2 O n sin 2 2(o) 

+ IF212 COS 2 O n sin 2 ¢ 

+ Re(F  1 F~) sin (O cos 2(O sin 20  n, 

I,, = I FII 2 sin 2 0n(sin 2 O n + cos 2 0 n cos 2 2(o) 

+ IF 212 sin 2 (o cos 2 On 

-- Re(F~ F*) sin (o cos 2(o sin 20 n, 

1 n = IF112(sin 2 O n + ~ sin 2 2(o cos 4 O n) 

+ IF212 sin 2 (o cos 2 On, (24) 

where (O is the azimuthal angle of the incident wave 
vector in the x y  plane. Thus, studying experimentally 
the azimuthal dependence of I , ,  I t and In ,  one can 
determine F 1 and F 2 and the tensor structure amplitude 
p n  [see (11)]. If ¢p = 0 or ~0 = n/2  then the a-polarized 
incident beam gives the g-polarized reflected one and 
vice versa.  

Now, let us discuss the properties of the screw-axis 
ATS reflections. There are two types of these re- 
flections: type I - those reflections for which F ~  = 
F.~ = F ~  = 0 and type II - the rest (see Table 1). The 
type I ATS reflections have the most simple polar- 
ization properties. From (19)-(22) and Table 1 one 
obtains Ioo = 1,,,, = O, I H = Io = I~ = I to  = l o t  for these 
reflections and Io,, is given by 

I o t =  [I F1 Iz sin 2 (O + IF212 cos 2 q) 

-- Re(E l F*) sin 2(O] cos 2 0 n (25) 

for a 21 screw axis and 

Io, ~ = I Fxl z cos z 08 (26) 

for 41, 43, 61 and 65 screw axes. Thus, in this case the 
o-polarized incident beam gives the g-polarized re- 
flected one and vice versa; the unpolarized incident 
beam gives the unpolarized reflected one. Then, the type 
I reflections vanish for the backward Bragg diffraction 
because in this case cos 0 B = 0. 
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The intensities of the type-II reflections can be ob- 
tained from (19)-(22) and are given by 

/a----[FI Is (1 + sin s 8B) + D(~o), 

I , ,=  [FI[2 sin 20s(1 + sin 2 On) + D(~o), 

/H----[El ts (1 + sin s 8B)s/2 + D(~o), 

D(tp) = IF212 cos 2 0 e + sin 20n[Re(F , F*) 

x cos 3rp ¥ I m ( F  1F*) sin 3~o] (27) 

for 3~ and 3s screw axes; 

L =  IF,12~(~o) + IFslSC(~o) 
+ Re(F  1 F~') cos s 0 n sin 4~o 

/ , , = s i n  s On[IFxl2C(~o) + IFslSB(~0) 

- -  Re(F  1 F~') cos 2 O n sin 4~0] 

I . =  (L + I.)/2 
B(~o) = 1 - cos 2 On sin s 2~o 

C(fo) = 1 - cos s O n cos 2 2rp (28) 

for 41, 43 and 42 screw axes, and 

I , ,=  IF~lS(1 + sins 0n) 

I,, = I F~ I s sin 2 On(1 + sin s On) 

I u =  IFll2(1 + sin s On)S~2 (29) 

for 6~, 6 z, 64 and 65 screw axes. The -Y- sign in (27) 
corresponds to F ~  = +iFnxx (see Table 1). It should be 
emphasized that the azimuthal patterns of ATS 
reflections given by (27) and (28) are connected with 
the crystal and do not depend on the choice of the 
coordinate axes in the xy plane. Unlike the type-I 
reflections the intensities of the type-II reflections are 
different for 6- and n-polarized incident beams, Io ___ I,~ 
and Io - I,~ oc (1 - sin 4 0B). Then, from (18) it can be 
easily shown that the type-II reflections are 'chiral', i.e. 
their intensities are different for the right-hand and 
left-hand circularly polarized incident beams. For 
example, let us consider the backward type-II re- 
flections (On = zr/2) for 3- and 6-fold screw axes. We 
find from (18) and (23) that only the beams with 
definite circular polarization (right hand if F ~  = iF~x 
and left hand if F ~  = --iFnxx) are reflected and the 
reflected beams have the same polarization. For 
opposite polarization the reflection is absent. Thus, in 
this case the crystal may be regarded as a circular 
polarizer or analyser. If 0 B < zr/2 the polarizations are 
elliptic and the axial ratio of the polarization ellipse is 
equal to sin t9 B for the 6-fold screw axes (for the 3- and 
4-fold screw axes this ratio depends on the parameters 
F 1 and F2). 

Note that the screw-axis ATS reflections are similar 
to those Bragg reflections of light in some liquid crystals 
which have been studied both theoretically and ex- 
perimentally by many authors (see, for example, the 
review paper by Belyakov, Dmitrienko & Orlov, 1979). 

E x a m p l e s  a n d  e s t i m a t i o n s  

To illustrate the developed theory let us consider the 001 
(l = 2n + 1) ATS reflections in crystals with TiO z 
(rutile) structure (the space group is D44k, P42/mnm ). 
One can imagine this structure as being constructed 
from successive layers with O - T i - O  bonds directed 
alternately at 45 o and - 4 5  o to the crystal axis a (see 
Fig. 1). The distance between these layers is c/2 and 
they have the same electron density. Hence, the 00l 
reflections should be forbidden if l is odd. However, the 
tensor of susceptibility is different for neighbouring 
layers because the principal axes of the tensor have 
different orientations in accordance with the directions 
of O - T i - O  bonds. Thus, the scattering amplitudes of 
the neighbouring layers are also different and this 
difference makes the 00l (l = 2n + 1) reflections 
possible. From Table 1 one can obtain the tensor 
structure amplitude of these ATS reflections taking into 
account both the screw axis 42 and the glide plane n [for 
00l (l = 2n + 1) reflections there is no difference 
between c and n glide planes]. It is clear from Table 1 
that due to the combined action of the screw axis and 
the glide plane only F ~  4: 0. Thus, the azimuthal 
dependences of these reflections are given by (24) with 
F z = 0 or by (28) with F 1 = 0. Note that the azimuthal 
dependences are stronger for the small 0 B. The 
polarization properties of these reflections are rather 
unusual: if ~0 = 0 or zr/2 then the 6.polarized incident 
beam gives the n-polarized reflected one and vice versa; 
if ~ = zr/4 then the 6. or n-polarized incident beam 
gives the 6- or n-polarized reflected one. 

Now, let us estimate the intensity of ATS reflections, 
i.e. the possible values of the structure amplitudes p x  of 
these reflections. The theoretical calculations of p z  are 
rather difficult (Kolpakov, Bushuyev & Kuz'min, 1978) 
and we shall estimate pr / f rom the experimental data. It 
is clear that the structure amplitude/~n may be of the 
same order of magnitude as the anisotropic part of p0 
(we denote it po). Then, po may be estimated from the 
anisotropy of the absorption coefficient p. For example, 
it has been observed by Cox & Beaumont (1980) that 
in ZnF 2 (rutile structure) near the Zn K edge the 
anisotropic part of p is approximately one-third of the 

A 

Fig. 1. The rutile structure (0 oxygen, • titanium). 
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isotropic part. Taking into account that /t is pro- 
portional to Im(F°), one obtains Im(F °) _~ 2 because 
the isotropic part Im(P~) ~_ 6 near the Zn K edge (two 
Zn atoms in a unit cell). It is clear that Re(F °) should 
be of the same order of magnitude due to the dispersion 
relations. In the region of the extended X-ray absorp- 
tion fine structure (EXAFS) the anisotropy of g is 
smaller and it is absent far from the K edge (Cox & 
Beaumont, 1980). Similar results have been obtained by 
Heald & Stern (1977) for selenium and by Templeton 
& Templeton (1980) for vanadium [the earlier works 
were reviewed by Az~iroff & Pease (1974)1. 

These estimations show that both po and the 
structure amplitude of ATS reflections /~n may be of 
the order of a few units in the close vicinity of an 
absorption edge; they are slightly less in the EXAFS 
region and vanish far from the edge. Thus, it seems that 
ATS reflections can be observed in suitable experi- 
mental conditions. Recently it has been reported by 
Templeton & Templeton (1982) that the anisotropic 
part of the structure amplitude of nonforbidden 
reflections may also be about a few units near the 
absorption edge. 

Note that some glide-plane forbidden reflections have 
been observed in white tin by Field (1976). The 
observed values of pn  were about a few units for Mo 
Ktx radiation, i.e. rather far from the tin K edge. Our 
estimations show that these values are too large to be 
caused by the anisotropy of susceptibility. 

It should be emphasized that forbidden reflections 
may also be excited v ia  multiple diffraction (Renninger, 
1937; Terminasov & Tuzov, 1964). If the wavelength is 
short then the integrated intensity of numerous Ren- 
ninger reflections may strongly distort the true intensity 
of ATS reflections. To avoid this distortion the longest 
possible wavelengths should be used. For example, near 
the Ti K edge (2 = 2.5 A) the Renninger pattern of the 
TiO 2 crystal contains 48 Renninger reflections per 360 ° 
and these reflections can be easily excluded from the 
azimuthal pattern of the 001 ATS reflection. Note that 
there are many compounds with the rutile structure 
(VO 2, MnO 2, NiF 2, MnF 2, CoF 2, etc.) which have 
suitable K-edge wavelengths. 

3. The polarization properties of ATS reflections are 
very unusual (the transformation of a polarization into 

polarization and v ice  versa  and the selective 
diffraction of the circularly polarized beam are pos- 
sible). The polarization properties may also have 
azimuthal dependence. 

The estimations, based on the experimental data, 
show that the structure amplitudes of the ATS 
reflections reach their maximum values near the 
absorption edges where they may be of the order of a 
few electrons atom -I. Thus, the intensity of ATS 
reflections may be comparable with the intensity of 
those reflections which arise due to the asphericity of 
the atomic electron density. But it is worthwhile to 
emphasize once more that the anisotropy of sus- 
ceptibility makes possible even those reflections 
(namely, the glide-plane and screw-axes forbidden 
reflections) which remain forbidden if only the 
asphericity of electron density and the atomic thermal 
motion are taken into account. 

The ATS reflections give us a unique possibility to 
study the anisotropy of the periodic part of X-ray 
susceptibility. The anisotropy of susceptibility is caused 
by the chemical bonds and depends on the local 
environment of the atom in the crystal. Therefore, this 
anisotropy may be different for the same atom placed 
into different crystals. The ATS reflections may be also 
useful for the better understanding of the fine structure 
of X-ray spectra near absorption edges. In the structure 
analysis the screw-axis ATS reflections give a way of 
distinguishing the enantiomorphous pairs of crystals. It 
would be very interesting to study the ATS reflections 
in cubic crystals where the anisotropy of absorption is 
absent (the theory of ATS reflections in cubic crystals 
will be discussed elsewhere). Note that the developed 
methods may be applied to nonforbidden reflections 
too. These methods may also be useful for the 
description of the structure and properties of the 'blue 
phase' in liquid crystals (Belyakov, Dmitrienko & 
Osadchii, 1982). 

The author is grateful to Professor V. I. Iveronova, 
Professor V. A. Belyakov and Dr R. Ch. Bokun for 
helpful discussions. 

Conclusion 

It is shown above that from the symmetry properties of 
the tensor of X-ray susceptibility one can obtain the 
main properties of the ATS reflections: 

1. The tensorial structure amplitudes of ATS re- 
flections are determined by at most two independent 
parameters (see Table 1). 

2. The intensity of ATS reflections may have smooth 
azimuthal dependence, i.e. it may vary during crystal 
rotation around the diffraction vector. 
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Abstract  

The RANTAN procedure has been used to solve an 
unknown structure with 100 atoms in the asymmetric 
unit. In a test of the power of the method a synthetic 
structure with 234 atoms in space group P1 was 
solved without difficulty. RANTAN is also very effec- 
tive as a multisolution fragment-development procedure 
with as little as 10% of the structure in the fragment. 

Introduction 

The RANTAN procedure (Yao Jia-xing, 1981) assigns 
random initial phases to a large number of reflexions 
together with weights. Subsequent phase refinement is 
by a controlled use of the tangent formula, in which the 
weights play a role. RANTAN has already been shown 
to be competitive in power and efficiency with other 
multisolution methods and further work has now been 
undertaken to explore the full potentiality of the method 
and to find new ways of exploiting the general 
approach. 

An unknown structure - complex 2 enniantin C: 
1 K S C N  

The data for this structure were provided by Dr G. 
Tischenko of the Institute of Crystallography, Moscow. 

* Permanent address: Institute of Physics, Academia Sinica, 
Peking, The Peoples' Republic of China. 

0567-7394/83/010035-03501.50 

The basic parameters were: formula 2[(C 12H21NO3)3 ] • 
KSCN; space group P21, Z -- 2; a -- 20.205, b -- 8.702, 
c -- 25.587 A and 7 -- 97"0°. There were 100 atoms in 
the asymmetric unit. 

MULTAN 80 was tried but did not solve the 
structure. RANTAN employed 400 reflexions (E > 
1.62) for the phase-determining process and 100 weak 
reflexions (E < 0.185) for calculating the PSIZERO 
figure of merit. The number of strong triple-phase 
relationships was 4377. The convergence map chose 
three general reflexions for fixing the origin and 
enantiomorph. Another 247 reflexions in the bottom of 
the convergence map were assigned random phases 
with weights of 0.25 giving a total of 250 reflexions in 
the starting set. 

RANTAN stopped at set 78 automatically and 
accepted this set as a true solution with figures of merit: 
ABSFOM 1.0521, PSIZERO 1.149, RESID 18.37, 
CFOM 2.8822. The E map showed two fragments 
which contained 40 and 45 atoms respectively. The 
group KSCN could not be found in the E map, except 
the carbon atom, since the group was disordered. Fig. 1 
shows the molecular structure. The preliminary least- 
squares refinement was carried out by the SHELX 76 
program (Sheldrick, 1976) and the R factor was 
14-57%. The result showed that the potassium atom 
had two positions with low occupation factors and that 
the group SCN seemed to rotate around the heavy 
centre. 
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